3.30.82 \(\int \frac {(2+3 x)^{7/2}}{(1-2 x)^{5/2} (3+5 x)^{3/2}} \, dx\) [2982]

Optimal. Leaf size=156 \[ \frac {2129 \sqrt {1-2 x} \sqrt {2+3 x}}{19965 \sqrt {3+5 x}}-\frac {434 (2+3 x)^{3/2}}{363 \sqrt {1-2 x} \sqrt {3+5 x}}+\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}-\frac {148831 E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6050 \sqrt {33}}-\frac {2252 F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{3025 \sqrt {33}} \]

[Out]

-148831/199650*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-2252/99825*EllipticF(1/7*21^(1/2
)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+7/33*(2+3*x)^(5/2)/(1-2*x)^(3/2)/(3+5*x)^(1/2)-434/363*(2+3*x)^(3/2)
/(1-2*x)^(1/2)/(3+5*x)^(1/2)+2129/19965*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {100, 155, 164, 114, 120} \begin {gather*} -\frac {2252 F\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{3025 \sqrt {33}}-\frac {148831 E\left (\text {ArcSin}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6050 \sqrt {33}}+\frac {7 (3 x+2)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {5 x+3}}-\frac {434 (3 x+2)^{3/2}}{363 \sqrt {1-2 x} \sqrt {5 x+3}}+\frac {2129 \sqrt {1-2 x} \sqrt {3 x+2}}{19965 \sqrt {5 x+3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^(7/2)/((1 - 2*x)^(5/2)*(3 + 5*x)^(3/2)),x]

[Out]

(2129*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(19965*Sqrt[3 + 5*x]) - (434*(2 + 3*x)^(3/2))/(363*Sqrt[1 - 2*x]*Sqrt[3 + 5
*x]) + (7*(2 + 3*x)^(5/2))/(33*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x]) - (148831*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*
x]], 35/33])/(6050*Sqrt[33]) - (2252*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(3025*Sqrt[33])

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {(2+3 x)^{7/2}}{(1-2 x)^{5/2} (3+5 x)^{3/2}} \, dx &=\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}-\frac {1}{33} \int \frac {(2+3 x)^{3/2} \left (\frac {233}{2}+201 x\right )}{(1-2 x)^{3/2} (3+5 x)^{3/2}} \, dx\\ &=-\frac {434 (2+3 x)^{3/2}}{363 \sqrt {1-2 x} \sqrt {3+5 x}}+\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}-\frac {1}{363} \int \frac {\left (-3730-\frac {13143 x}{2}\right ) \sqrt {2+3 x}}{\sqrt {1-2 x} (3+5 x)^{3/2}} \, dx\\ &=\frac {2129 \sqrt {1-2 x} \sqrt {2+3 x}}{19965 \sqrt {3+5 x}}-\frac {434 (2+3 x)^{3/2}}{363 \sqrt {1-2 x} \sqrt {3+5 x}}+\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}-\frac {2 \int \frac {-\frac {282759}{4}-\frac {446493 x}{4}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{19965}\\ &=\frac {2129 \sqrt {1-2 x} \sqrt {2+3 x}}{19965 \sqrt {3+5 x}}-\frac {434 (2+3 x)^{3/2}}{363 \sqrt {1-2 x} \sqrt {3+5 x}}+\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}+\frac {1126 \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{3025}+\frac {148831 \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx}{66550}\\ &=\frac {2129 \sqrt {1-2 x} \sqrt {2+3 x}}{19965 \sqrt {3+5 x}}-\frac {434 (2+3 x)^{3/2}}{363 \sqrt {1-2 x} \sqrt {3+5 x}}+\frac {7 (2+3 x)^{5/2}}{33 (1-2 x)^{3/2} \sqrt {3+5 x}}-\frac {148831 E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6050 \sqrt {33}}-\frac {2252 F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{3025 \sqrt {33}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 8.46, size = 97, normalized size = 0.62 \begin {gather*} \frac {\frac {5 \sqrt {4+6 x} \left (-28671+66174 x+189851 x^2\right )}{(1-2 x)^{3/2} \sqrt {3+5 x}}+148831 E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )-74515 F\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )|-\frac {33}{2}\right )}{99825 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^(7/2)/((1 - 2*x)^(5/2)*(3 + 5*x)^(3/2)),x]

[Out]

((5*Sqrt[4 + 6*x]*(-28671 + 66174*x + 189851*x^2))/((1 - 2*x)^(3/2)*Sqrt[3 + 5*x]) + 148831*EllipticE[ArcSin[S
qrt[2/11]*Sqrt[3 + 5*x]], -33/2] - 74515*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(99825*Sqrt[2])

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 224, normalized size = 1.44

method result size
default \(-\frac {\sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (148632 \sqrt {2}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}-297662 \sqrt {2}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}-74316 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+148831 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-5695530 x^{3}-5782240 x^{2}-463350 x +573420\right )}{199650 \left (15 x^{2}+19 x +6\right ) \left (-1+2 x \right )^{2}}\) \(224\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (\frac {-\frac {37975}{2662} x^{2}-\frac {144305}{7986} x -\frac {7595}{1331}}{\sqrt {\left (-\frac {1}{2}+x \right ) \left (-30 x^{2}-38 x -12\right )}}+\frac {94253 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{279510 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {148831 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\EllipticE \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \EllipticF \left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{279510 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {343 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{2904 \left (-\frac {1}{2}+x \right )^{2}}-\frac {2 \left (-30 x^{2}-5 x +10\right )}{33275 \sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(253\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(7/2)/(1-2*x)^(5/2)/(3+5*x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/199650*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(148632*2^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2)
)*x*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)-297662*2^(1/2)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x*(2
+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)-74316*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/
7*(28+42*x)^(1/2),1/2*70^(1/2))+148831*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/7*(28+42
*x)^(1/2),1/2*70^(1/2))-5695530*x^3-5782240*x^2-463350*x+573420)/(15*x^2+19*x+6)/(-1+2*x)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(1-2*x)^(5/2)/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((3*x + 2)^(7/2)/((5*x + 3)^(3/2)*(-2*x + 1)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]
time = 0.24, size = 50, normalized size = 0.32 \begin {gather*} \frac {{\left (189851 \, x^{2} + 66174 \, x - 28671\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{19965 \, {\left (20 \, x^{3} - 8 \, x^{2} - 7 \, x + 3\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(1-2*x)^(5/2)/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/19965*(189851*x^2 + 66174*x - 28671)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(20*x^3 - 8*x^2 - 7*x + 3)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(7/2)/(1-2*x)**(5/2)/(3+5*x)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3878 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(1-2*x)^(5/2)/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

integrate((3*x + 2)^(7/2)/((5*x + 3)^(3/2)*(-2*x + 1)^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (3\,x+2\right )}^{7/2}}{{\left (1-2\,x\right )}^{5/2}\,{\left (5\,x+3\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x + 2)^(7/2)/((1 - 2*x)^(5/2)*(5*x + 3)^(3/2)),x)

[Out]

int((3*x + 2)^(7/2)/((1 - 2*x)^(5/2)*(5*x + 3)^(3/2)), x)

________________________________________________________________________________________